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Abstract. We propose a local regularization of elliptic optimal control problems which
involves the nonconvex Lq fractional penalizations in the cost function. The proposed
Huber type regularization allows us to formulate the PDE constrained optimization for-
mulation as a DC programming problem (difference of convex functions) that is useful to
obtain necessary optimality conditions and tackle its numerical solution by applying the
well known DC algorithm used in nonconvex optimization problems. By this procedure
we approximate the original problem in terms of a consistent family of parameterized
problems for which there are efficient numerical methods available. Finally, we present
numerical experiments to illustrate our theory with different configurations associated to
the parameters of the problem.

1. Introduction

Several optimal control problems governed by PDE’s with sparse solutions have been
considered in recent years. One of the pioneer works on this subject c.f.[19] introduced
optimal control problems with L1–norm penalization in order to promote sparse optimal
solutions. These solutions are characterized by having small supports, which are inter-
preted as a “localized” action of the optimal control. This particular feature of sparse
optimal controls is relevant in applications because is rather difficult to implement opti-
mal controls taking values on the whole domain in practice, which is the usual case of
optimal control problems with the usual L2–term in its cost functional. Another inter-
esting class of optimal control problems involving sparsity where considered in [3] and [2]
where the set of feasible controls is chosen in the space of regular Borel measures, therefore
optimal controls can be supported in a zero Lebesgue measure set.

Another less explored approach that offers sparse solutions induced by a penalization
term was considered in [15] which refers to penalizations consisting in nonconvex Lq–
functionals with q ∈ [0, 1). These kind of penalizations have many important applications,
for instance: in inverse problems on the reconstruction of the sparsest solution in unde-
termined systems [17], image restoration [10], compressive sensing [9] and optimal control
problems [15]. In particular, the L0–functional is a difficult problem which corresponds to
the selection of the most representative variables of the optimization process, extending
the notion of cardinality of the control variable in finite dimensions, represented by the `0

norm, which is well known to be a NP–hard problem. Lq–functionals with q ∈ (0, 1) on
the other hand, are a natural approximation to L0–functional. However, they are neither
convex nor differentiable. In [15] a similar problem is considered involving a penalization
term for the control variable involving the H1

0 –norm, this allows to get and explicit opti-
mality system that can be solved directly by semi–smooth Newton methods. In our case,
we consider a Tikhonov term in the L2–norm. Although existence of optimal controls can
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be argued in this case, uniqueness of the solution is not guaranteed as showed in a simple
example below.

Due to the lack of convexity and differentiability these type of costs are difficult to tackle
numerically. In this paper, we address the numerical solution of this type of problems by
regularizing the fractional Lq–functionals; for this purpose, we introduce a Huber–like
smoothing function which regularizes the nonconvex Lq term. In this way, we obtain
a family of regularized problems whose objective functional can be expressed as a DC-
function ( “DC” stands for difference of convex functions), which reveals the underlying
convexity of this class of problems.

Although the regularized problem remains nonconvex and nondifferentiable, we can
take advantage of the DC structure of the functional by applying known tools from the
convex analysis and DC programming theories in order to derive optimality conditions
and prove that the regularization is consistent. Moreover, we propose a numerical method
based on the DC-Algorithm. It follows that the proposed DC splitting leads to a primal–
dual updating that only requires the numerical resolution of a convex L1–norm penalized
optimal control problem in each iteration, for which there are efficient numerical methods.

This paper is organized as follows. In section 1 we introduce the non convex optimal
control problems endowed with Lq–functionals with q = 1

p , and p > 1. In Section 2 we

introduce a Huber–like smoothing function in order to regularize the nonconvex optimal
control problems. We show that the regularized problems can be expressed as a difference
of convex functions and derive optimality conditions in Section 3. The box–constrained
case is discussed at the end of this section. In addition, we provide a proof that the so-
lution of the regularized version of the optimal control problem approximates its solution
when the regularized parameter tends to infinity. Section 4 is devoted to the numerical
solution by proposing a DC–Algorithm based method. We finish this research by showing
numerical examples and numerical evidence of the efficiency of the proposed method.

For p > 1, let us define the mapping Υp defined by

(1) u 7→ Υp(u) :=

∫
Ω
|u|

1
p .

Let Ω a bounded Lipschitz domain in Rn (n = 2 or n = 3) with boundary Γ. We are

interested in the following optimal control problem with a L1/p–fractional penalization
term (6), formulated as follows:

(P)


min
(y,u)

1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥp(u)

subject to

Ay = u+ f, in Ω,

y = 0, on Γ.

Where f is a given function in L2(Ω) and A is a uniformly elliptic second order differ-
ential operator, of the form

(2) (Ay)(x) = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂y(x)

∂xj

)
+ c0y(x),
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where the coefficients aij ∈ C0,1(Ω̄), and c0 ∈ L∞(Ω). Moreover, the matrix (aij)i,j is
symmetric and fulfill the uniform ellipticity condition:

∃σ > 0 :
n∑

i,j=1

aij(x)ξiξj ≥ σ|ξ|2, ∀ξ ∈ Rn, for almost all x ∈ Ω.

We will denote the adjoint ofA byA∗. By defining the bilinear form a(y, v) := 〈Ay, v〉H−1(Ω),H1
0 (Ω)

we consider the following linear elliptic problem

(3) a(y, v) = (w, v), ∀v ∈ H1
0 (Ω).

It is well known that (3) has a unique solution belonging to the space H1
0 (Ω). Let

S : L2(Ω)→ H1
0 (Ω) be the linear and continuous operator which assigns to every v ∈ L2(Ω)

the corresponding solution y = y(w) ∈ H1
0 (Ω) satisfying (3). Thus, the state equation:

Ay = u in Ω with homogeneous Dirichlet boundary conditions considered in (P), is under-
stood in the weak sense of equation (3). In this way, the state y associated to the control
u has the representation y = S(u + f), which in turn, allows us to formulate the usual
reduced problem:

(P’) min
u
J(u) :=

1

2
‖Su+ Sf − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥp(u).

Theorem 1. There exists a solution ū ∈ L2(Ω) for the regularized problem (P’).

Proof. Existence of a solution can be argued by standard techniques. Let (un)n∈N be a
minimizing sequence for problem (P’). By the definition of J in (P’) it follows that (un)n∈N
is bounded in L2(Ω). Therefore, we extract a weakly convergent subsequence (un)n∈N with
weak limit ū ∈ L2(Ω). Moreover, by the usual compact embedding H1

0 (Ω) ↪→↪→ L2(Ω),
the corresponding state yn := y(un) = S(un) converges strongly to ȳγ := y(ūγ) in L2(Ω).
Consequently, it also converges strongly in L1(Ω). By Lemma [15, Lemma 5.1] Υp is a
continuous and quasiconvex functional, then it is weakly lower semi-continuous, see [5, pg.
26] or [16, Lemma 2.1], therefore we have

inf J(u) = lim
n→∞

J(un) = lim inf
n→∞

J(un)

= lim inf
n→∞

f(un) + Υp(un)

≥ lim inf
n→∞

f(un) + lim inf
n→∞

Υp(un)

≥ f(ū) + Υp(ū) = J(ū),

which implies that J attains its minimum value at ū and thus ūγ is a solution for problem
(7) and therefore it is an optimal control for (P’).

Remark 1. The question of uniqueness is more delicate. The following example of the
minimization of a real function has two solutions. Let f : R → R given by f(x) = 1

2(x −
a)2 +β|x| 12 . By choosing a = 1+ 1

2 and β = 1, it is easy to verify that f has two minimum

points at x1 = 0 and x2 = 1 with the minimum value f(0) = f(1) = 9
8 . Therefore, we

can not expect uniqueness of the solution for problem (P’) in view of nonconvexity of cost
function.

As in the work of Stadler [19] where L1–norm penalization optimal control problems
are considered, we expect that some analogous properties also hold for problem (P). For
example, it is expected that a local solution for (P) vanishes if the parameter β is large
enough. We address to this question in the following lemma.
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Lemma 1. Let S∗ be the adjoint operator of S, and let M > 0. If β ≥ β0 with β0 =

M
p−1
p ‖S∗(Sf − yd)‖L∞(Ω), then problem (P) has a local minimum at ū = 0 in B∞(0,M)

with associated state ȳ = Sf .

Proof. Taking into account the reduced form (P’), we argue analogously to [19, Lemma
3.1]. Let us take u ∈ B∞(0,M), then |u(x)| < M for almost all x in Ω. Computing the
difference of the cost values we have:

J(u)− J(0) =
1

2
‖Su+ Sf − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥp(u)

− 1

2
‖Sf − yd‖2L2(Ω),

=
1

2
‖Su‖2L2(Ω) + (Su, Sf − yd)L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥp(u),

≥1

2
‖Su‖2L2(Ω) − ‖u‖L1(Ω)‖S∗(Sf − yd)‖L∞(Ω) +

α

2
‖u‖2L2(Ω) + βΥp(u),

− ‖u‖L1(Ω)‖S∗(Sf − yd)‖L∞(Ω) + βΥp(u),

=

∫
Ω
β|u|

1
p − |u|‖S∗(Sf − yd)‖L∞(Ω) dx,

≥
∫

Ω
β0|u|

1
p − |u|‖S∗(Sf − yd)‖L∞(Ω) dx,

by the definition of β0 it follows that

J(u)− J(0) ≥
∫

Ω

(
M

p−1
p − |u|

p−1
p

)
|u|

1
p ‖S∗(Sf − yd)‖L∞(Ω) dx > 0,

where the non-negativity is obtained by our assumption u ∈ B∞(0,M).

2. Huber–type Regularization of the Optimal Control Problem

In order to analyze this problem we formulate a family of regularized problems, by means
of the following Huber–type regularization of the absolute value. Extending the classical
Huber C1 regularization of the absolute value but appropriately taking into account the
powers defining Υp so that the resulting function to the power 1/p is a locally convex
regularization for the nonconvex and non differentiable term, see Figure 8 below.

For γ >> 1, we define

(4) hp,γ(v) =


γp−1

p |v|p, if v ∈ [− 1
γ ,

1
γ ],

|v|+ 1
γ

1−p
p , otherwise.

Remark 2. The function hp,γ is a local regularization of the absolute value for different
smoothing polynomial powers. In addition, notice that by construction, we have the relation

(5) hp,γ(v) ≤ |v|, ∀v ∈ R

Now, we have the basic tool in order to formulate a regularized version of (P). We
introduce the function Υp,γ defined by

(6) u 7→ Υp,γ(u) :=

∫
Ω
hp,γ(u(x))

1
pdx.
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Figure 1. Exact and regularized penalizations (in dashed lines) for γ = 10
and γ = 100, for p = 2 (left) and p = 8 (right)

.

The regularized problem is obtained by replacing Υp by Υp,γ . Therefore, the surrogate
problem reads:

(Pγ)


min
(y,u)

1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥp,γ(u)

subject to:

Ay = u+ f in Ω,

y = 0 on Γ.

Let us formulate the reduced optimal control problem from (Pγ) by replacing the control–
to–state operator S. Let f be the regular part of the functional, which is f(u) = 1

2‖Su−
yd‖2L2(Ω) + α

2 ‖u‖2L2(Ω). Now we have the reduced problem,

(7) min
u
Jγ(u) := f(u) + βΥp,γ .

From [15, Lemma 5.1] it is known that if a sequence (un) such that un → u in L1(Ω)
then Υp(un) → Υp(u) as n → ∞. In the case of Υγ,p we have the following continuity
property.

Lemma 2. Let (un) be a sequence such that un → u in L1(Ω), then

Υp,γ(un)→ Υp,γ(u), when n→∞,

for all p > 1 and all γ > 0.

Proof. Analogously to [15, Lemma 5] we define the following sets:

Ω1 = {x : |u(x)| ≤ 1
γ and |un(x)| ≤ 1

γ },
Ω2 = {x : |u(x)| > 1

γ and |un(x)| > 1
γ },

Ω3 = {x : |u(x)| ≤ 1
γ and |un(x)| > 1

γ } ∪ {x : |u(x)| > 1
γ and |un(x)| ≤ 1

γ },

which we use to estimate
∣∣∣∫Ω hp,γ(u(x))

1
p − hp,γ(un(x))

1
p dx

∣∣∣ according to (4).
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Since by our assumption un → u in L1(Ω) whenever n→∞, in Ω1 we have that∣∣∣∣∫
Ω1

hp,γ(u(x))
1
p − hp,γ(un(x))

1
p dx

∣∣∣∣ ≤ (γp−1

p

) 1
p
∫

Ω1

| |u(x)| − |un(x)| | dx,

≤
(
γp−1

p

) 1
p
∫

Ω
|u(x)− un(x)| dx→ 0.(8)

Now, in Ω2 we can estimate∣∣∣∣∫
Ω2

hp,γ(u(x))
1
p − hp,γ(un(x))

1
p dx

∣∣∣∣ ≤ ∫
Ω2

∣∣∣∣∣
(
|u(x)|+ 1

γ

1− p
p

) 1
p

−
(
|un(x)|+ 1

γ

1− p
p

) 1
p

∣∣∣∣∣ dx
≤
∫

Ω2

| |u(x)| − |un(x)| |
1
p dx,

≤
∫

Ω2

|u(x)− un(x) |
1
p dx.

By applying Hölder inequality in the last integral, and by our convergence assumption,
we have ∣∣∣∣∫

Ω2

hp,γ(u(x))
1
p − hp,γ(un(x))

1
p dx

∣∣∣∣ ≤ |Ω| p
p−1

(∫
Ω
|u(x)− un(x)| dx

) 1
p

→ 0.(9)

Finally, we estimate in Ω3. Without loss of generality we assume that {x : |u(x)| ≤
1
γ and |un(x)| > 1

γ }. The neglected part can be argued in the same way by interchanging

the role of |u(x)| and |un(x)|. Taking into account that |u(x)| ≤ 1/γ < |un(x)| in Ω3, it
follows that

(
γp−1

p

)
|u(x)|p < |un(x)|+ 1

γ

1− p
p

,

which implies∣∣∣∣∫
Ω2

hp,γ(u(x))
1
p − hp,γ(un(x))

1
p dx

∣∣∣∣ ≤ ∫
Ω2

|hp,γ(u(x))− hp,γ(un(x))|
1
p dx

=

∫
Ω2

∣∣∣∣(γp−1

p

)
|u(x)|p − |un(x)| − 1

γ

1− p
p

∣∣∣∣
1
p

dx

=

∫
Ω2

(
|un(x)|+ 1

γ

1− p
p
−
(
γp−1

p

)
|u(x)|p

) 1
p

dx.(10)

Furthermore, in Ω3 we have that 1
γp < |un(x)| + 1

γ
1−p
p < |un(x)| from which we obtain

that

|un(x)|+ 1

γ

1− p
p

< |un(x)|p
(
γp−1

p

)
.(11)

By replacing (11) in (10) we get the following relation
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∣∣∣∣∫
Ω2

hp,γ(u(x))
1
p − hp,γ(un(x))

1
p dx

∣∣∣∣(12)

≤
(
γp−1

p

) 1
p
∫

Ω2

(|un(x)|p − |u(x)|p )
1
p dx

=

(
γp−1

p

) 1
p
∫

Ω2

| |un(x)|p − |u(x)|p |
1
p dx

≤
(
γp−1

p

) 1
p
∫

Ω
| |un(x)|p − |u(x)|p |

1
p dx.

The last term is familiar for the previous arguments, implying that the right–hand side of
(12) tends to 0 as n → 0. Finally, collecting the estimates (8), (9) and (12) the result of
the lemma is proved.

The next Theorem address to the question about existence of a solution of problem
(Pγ).

Theorem 2. There exists a solution ūγ ∈ L2(Ω) for the regularized problem (Pγ).

Proof. The proof is analogous to Theorem (1). Following the same arguments we
have a weakly convergent subsequence (un)n∈N with weak limit ūγ ∈ L2(Ω) and (yn)n∈N
converging to ȳ strongly in L1(Ω). Now, by Lemma 2 we known that Υp,γ is a continuous
and quasiconvex function. Again, by [5, pg. 26] or [16, Lemma 2.1] it is weakly lower
semi-continuous. Likewise, we estimate:

inf Jγ(u) = lim
n→∞

Jγ(un) = lim inf
n→∞

Jγ(un)

= lim inf
n→∞

f(un) + Υp,γ(un)

≥ lim inf
n→∞

f(un) + lim inf
n→∞

Υp,γ(un)

≥ f(ūγ) + Υp,γ(ūγ) = Jγ(ūγ),

which implies that Jγ attains its minimum value at ūγ and thus ūγ is a solution for problem
(7) and therefore it is an optimal control for (Pγ).

3. Optimality Conditions of the regularized problem

Our aim in this section is to derive an optimality system for problem (Pγ) via a DC
programming approach. The key idea is to introduce an L1–norm penalization which
allows us to formulate our problem as a difference of convex functions with functions G
and H such that:

(13) Jγ(u) = G(u)−H(u).

A function that can be expressed in this form is known as a DC–function and several
problems involving this type of functions had been analyzed and its theory can be found
in the monograph of Hiriart Urruty [12] or [7]. Therefore, we investigate how to express
the cost function of problem (Pγ) as a convenient difference of convex functions and then
rely on the theory of DC programming.

We start by introducing the following quantity, which will be frequently used along this
paper:

(14) δ =
γ
p−1
p

p
1
p

.
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The next step is to define G and H in (13) as follows:

G : L2(Ω) → R
u 7→ G(u) := 1

2‖Su+ Sf − yd‖2L2(Ω) + α‖u‖2L2(Ω) + βδ‖u‖L1(Ω),

H : L2(Ω) → R
u 7→ H(u) := β

(
δ‖u‖L1(Ω) −Υp,γ(u)

)
.

(15)

Lemma 3. The real function j : R→ R+ ∪ {0}, defined by

(16) j(z) =

 δ|z| −
(
|z|+ 1

γ
1−p
p

) 1
p
, if |z| > 1

γ

0, if |z| ≤ 1
γ ,

is a nonegative, convex and continuously differentiable and its derivative is given by

(17) j′(z) =

 δ sign(z)− 1
p

(
|z|+ 1

γ
1−p
p

) 1−p
p

sign(z), if |z| > 1
γ

0, if |z| ≤ 1
γ .

Proof. Let us first check differentiability. It is clear that j is differentiable if |z| < 1
γ

or |z| > 1
γ , where j′(z) = 0 and j′(z) = δsign(z)− 1

p(|z|+ 1
γ

1−p
p )

1−p
p . Therefore, we check

differentiability at z = ± 1
γ . Consider z = − 1

γ , since j(± 1
γ ) = 0 and | 1γ + h| < 1

γ for

sufficiently small h, we have lim
h→0+

j(z + h)− j(z)
h

= lim
h→0+

j(− 1
γ + h)

h
= 0. On the other

hand, since − 1
γ + h < 0 for sufficiently small h

lim
h→0−

j(z + h)− j(z)
h

= lim
h→0−

j(− 1
γ + h)

h

= lim
h→0−

δ
(

1
γ − h

)
−
(

1
γ − h+ 1

γ
1−p
p

) 1
p

h
= lim

h→0−

(
1
γp

) 1
p − δh−

(
1
γp − h

) 1
p

h
,

where we apply the binomial theorem to get

lim
h→0−

(
1
γp

) 1
p − δh−

(
1
γp − h

) 1
p

h
= lim

h→0−

(
1
γp

) 1
p − δh−

(
1
γp

) 1
p − 1

p

(
1
γp

) 1−p
p
h+ o(h)

h

= lim
h→0−

o(h)

h
= 0.

Therefore j′(− 1
γ ) = 0. Analogously, it also follows that j′( 1

γ ) = 0 which implies formula

(17). Moreover, an straightforward observation reveals that j′ is continuous, therefore
j is continuously differentiable.Convexity follows by noticing that function R+ 3 z 7→
(z +

1

γ

1− p
p

)1/p is concave because it is the composition of an afine function and and

concave function. Therefore, for z > 1
γ , we find that the function

R+ 3 z 7→ δz −
(
z +

1

γ

1− p
p

)1/p

,

is convex and monotone increasing which, by composition with the absolute value, implies
the convexity of j. Finally, we make the simple but important observation that j vanishes
in the interval [− 1

γ ,− 1
γ ]. This, together with convexity imply that j is nonnegative.
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By employing the function j we can write H as follows:

(18)
H : L2(Ω) → R

u 7→ H(u) =

∫
Ω
j(u)dx.

Lemma 4. The functions G and H defined in (15) are convex.

Proof. Since α ≥ 0 and β ≥ 0, it is clear that function G is strictly convex if β+α > 0.
In the case of H convexity follows from Lemma 3.

With above definitions, it is clear that the representation (13) of Jγ has been set up.
Therefore, Jγ is a DC-function and we can express optimality conditions in term of G and
H by considering the following formulation for problem (7)

(19) min
u
Jγ(u) = G(u)−H(u),

Lemma 5. The function H defined in (15) is Gâteaux differentiable, and its derivative
δH(ū; ·) is represented by (βw̄, ·), where w̄ ∈ L2(Ω) depends on ū, p and γ, and it is given
by

(20) w̄(x) :=

 δ − 1

p

(
|ū(x)|+ 1

γ

1− p
p

) 1−p
p

, if |ū(x)| ≥ 1
γ ,

0, otherwise.

Proof. First, notice that j′(z) given in (17) satisfies that

(21) 0 < |j′(z)| =
∣∣∣∣∣δ − 1

p

(
|z|+ 1

γ

1− p
p

) 1−p
p

∣∣∣∣∣ < δ, for |z| > 1

γ
.

Therefore, by using (21) and the properties of j stablished in Lemma 3, we apply [1,
Theorem 2.7, pg. 19] in order to deduce that superposition operator u 7→ j(u) is Gâteaux
differentiable from L2(Ω) into L2(Ω), and its Gâteaux derivative in the direction v is
given by j′(u)v ∈ L2(Ω). Hence, Theorem 7.4-1 in [4] allows us to compute the Gâteaux
derivative of H at u in any direction v ∈ L2(Ω) given by

(22) δH(ū, v) =

∫
Ω
j′(ū(x))vdx = (w̄, v),

with w̄ given by (20).

3.1. First–order necessary conditions. We will derive an optimality system from the
following optimality conditions of DC–programming theory. The conditions for local and
global optimality can be found in [12, Proposition 3.1 and 3.2] or in [8]. From this theory
we will use the following result which permits the characterization of local minima.

Proposition 1. Let G and H, the convex functions defined in (15). If ū is a local
minimum of the DC–function Jγ = G−H, then

(23) ∂H(ū) ⊂ ∂G(ū).

Next, we derive the optimality system with the help of the last proposition.
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Theorem 3. Let ū a solution of (Pγ), then there exist ȳ = Sū in H1
0 (Ω), an adjoint state

φ ∈ H1
0 (Ω), a multiplier ζ ∈ L2(Ω) and w̄ given by (20) such that the following optimality

system is satisfied:

Aȳ = ū+ f, in Ω,
ȳ = 0, on Γ,

(24a)

A∗φ̄ = ȳ − yd, in Ω,
φ̄ = 0, on Γ,

(24b)

φ̄+ αū+ β (δ ζ − w̄) = 0,(24c)

ζ(x) = 1, if ū(x) > 0,
ζ(x) = −1, if ū(x) < 0,
|ζ(x)| ≤ 1, if ū(x) = 0,

(24d)

for almost all x ∈ Ω.

Proof. Clearly, equation (24a) is equivalent to Sū = ȳ. By standard properties of
the subdifferential calculus c.f.[13], the subdifferential of G at ū is given by ∂G(ū) =
∇f(ū)+∂ ‖ · ‖L1(Ω)(ū). By Lemmas 2 and 5, it follows that ∂H(ū) consists in the singleton

{w̄}. Thus, condition (23) becomes

w̄ ∈ ∇f(ū) + βδ∂ ‖ · ‖L1(Ω)(ū).(25)

Since S is a linear and continuous operator from L2(Ω) into L2(Ω), the computation of
∇f(ū) is straightforward, see for instance [5]. Therefore, for u ∈ L2(Ω) we have that

∇f(ū)u = (Su, Sū+ Sf − yd)L2(Ω) + α(u, ū)L2(Ω)

= (u, αū+ S∗(ȳ − yd)L2(Ω).(26)

Moreover, by introducing the adjoint state φ̄ ∈ H1
0 (Ω) as the solution of the adjoint

equation: (24b)

A∗φ̄ = ȳ − yd in Ω,
φ̄ = 0 on Γ,

we are able to write φ̄ = S∗(ȳ − yd) (S∗ denoting the adjoint control-to–state operator).
On the other hand, it is well known [14, Chapter 0.3.2], that any ζ ∈ ∂ ‖ · ‖L1(Ω)(ū) is

characterized by

(27) ζ(x)

 = 1, if ū(x) > 0,
= −1, if ū(x) < 0,
∈ [−1, 1], if ū(x) = 0.

In this way, from (26) we obtain that ∇f(ū) = φ̄+ αū which together with (27) imply
the existence of ζ ∈ ∂ ‖ · ‖L1(Ω)(ū) ⊂ L∞(Ω) which allows us to write (25) in the form:

φ̄+ αū+ β(δζ − w̄) = 0.(28)

An important question regarding the regularized problem (Pγ) is about the convergence
of the solutions of (Pγ) to a solution of the original problem (P) when γ →∞. We answer
this question in the following Theorem.

Theorem 4. Let ūγ be a solution of problem (Pγ) then the limit u∗ := limγ→∞ ūγ is a
solution for problem (P).
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Proof. We begin by noticing that the sequence (ūγ)γ>0 is bounded in L2(Ω). Indeed,
since S0 = 0, optimality of ūγ results in

α

2
‖uγ‖2L2(Ω) ≤ Jγ(ūγ) ≤ Jγ(0) =

1

2
‖yd‖2L2(Ω),

which implies the boundedness of (ūγ)γ>0 in L2(Ω) for α > 0.
As usual, reflexivity of L2(Ω) allows us to extract a weakly convergent subsequence,

denoted again by (ūγ)γ>0 which has the limit u∗ ∈ L2(Ω). Arguing again that the opti-
mality of ūγ implies that Jγ(ūγ) ≤ Jγ(u) for any u ∈ L2(Ω) and taking into account (5),
it follows that

Jγ(ūγ) ≤ Jγ(u)

=
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥp,γ(u)

≤ 1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥ(u) = J(u),

implying

(29) lim inf
γ→0

Jγ(ūγ) ≤ J(u).

On the other hand, we also have that

lim inf
γ→0

Jγ(ūγ) = lim inf
γ→∞

(f(ūγ) + Υp,γ(ūγ))

≥ lim inf
γ→∞

f(ūγ) + lim inf
γ→∞

Υp,γ(ūγ)

≥ f(u∗) + lim inf
γ→∞

Υp,γ(ūγ),(30)

where the last relation is obtained in view of the weakly lower semicontinuity of f . The
next step is to consider the last term in (30). By definition of the Huber–type regularization
(4) we find that

lim inf
γ→∞

Υp,γ(ūγ) = lim inf
γ→∞

∫
Ω

(hp,γ(ūγ))
1
p dx

≥ lim inf
γ→∞

∫
Ω
χΩγ

γ
p−1
p

p
1
p

|ūγ | dx+ lim inf
γ→∞

∫
Ω
χΩcγ

(
|ūγ |+

1

γ

1− p
p

) 1
p

dx.(31)

Since ūγ is bounded and χΩγ → 0 as γ →∞ the first term in (31) vanishes, therefore, we
drive our analysis to the last term in (31). Consider the function g : R+∪{0} → R defined

by x 7→ x
1
p . It is clear that g is a concave differentiable function for p > 1. Furthermore,

it is known that g satisfies the inequality

(32) g(x+ h) ≥ g(x)− g′(x+ h)h.

Applying this inequality we have

lim inf
γ→∞

∫
Ω
χΩcγ

(
|ūγ |+

1

γ

1− p
p

) 1
p

dx

≥ lim inf
γ→∞

∫
Ω
χΩcγ

(
|ūγ |

1
p − 1

γ

1− p
p2

(
|ūγ(x)|+ 1

γ

1− p
p

) 1−p
p

)
dx

≥ lim inf
γ→∞

∫
Ω
χΩcγ |ūγ |

1
p − lim sup

γ→∞

∫
Ω
χΩcγ

(
1

γ

1− p
p2

(
|ūγ(x)|+ 1

γ

1− p
p

) 1−p
p

)
dx.
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Here, we apply Hölder inequality on the right term, hence

lim inf
γ→∞

∫
Ω
χΩcγ

(
|ūγ |+

1

γ

1− p
p

) 1
p

dx

≥ lim inf
γ→∞

∫
Ω
|ūγ |

1
p − lim sup

γ→∞
‖χΩcγ‖L∞(Ω)

1

γ

∫
Ω

∣∣∣∣∣1− pp2

(
|ūγ(x)|+ 1

γ

1− p
p

) 1−p
p

∣∣∣∣∣ dx
= lim inf

γ→∞

∫
Ω
|ūγ |

1
p dx− lim sup

γ→∞

1

γ

∫
Ω

∣∣∣∣∣1− pp2

(
|ūγ(x)|+ 1

γ

1− p
p

) 1−p
p

∣∣∣∣∣ dx
= lim inf

γ→∞

∫
Ω
|ūγ |

1
p dx,(33)

where the last relation follows since the integrant of the right term is bounded. Taking

into account (33) and (31) and the lower semicontinuity of | · |
1
p we arrive to the inequality:

(34) lim inf
γ→∞

Υp,γ(ūγ) ≥ lim inf
γ→∞

∫
Ω
|ūγ |

1
p dx =

∫
Ω
|ū∗|

1
p dx,

which, combined with (30) implies that

(35) lim inf
γ→0

Jγ(ūγ) ≥ f(u∗) +

∫
Ω
|ū∗|

1
p dx = J(u∗).

Finally, (35) and (29) imply that J(u∗) = lim infγ→∞ Jγ(ūγ)

3.2. First–order necessary conditions with box–constraints. Since box–constraints
are importan in applications, we give a further discussion when they are included in our
optimal control. Therefore, the set of feasible controls is given by

(36) Uad = {u ∈ L2(Ω) : ua(x) ≤ u(x) ≤ ub(x), a.a. x ∈ Ω},

where ua and ub are given functions in L∞(Ω) satisfying ua(x) < ub(x) a.a. x ∈ Ω.
Therefore, the control constrained optimal control problem reads:

(PC)


min
(y,u)

1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥp(u)

subject to:

u ∈ Uad and
Ay = u+ f, in Ω,

y = 0, on Γ.

Remark 3. It follows by definition (36) that Uad ⊂ B∞(0,M) with M = max{‖ua‖L∞(Ω), ‖ub‖L∞(Ω)}
Therefore, according to Lemma 1 if β > β0 = M

p−1
p ‖S∗(Sf − yd)‖L∞(Ω) then ū = 0 is

solution of (PC).

Analogous to the unconstrained optimal control problem (P’), after introducing the
control–to–state operator S and replacing Υp by Υp,γ , we introduce the regularized control
constrained problem
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(PCγ)


min
(y,u)

1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥp,γ(u)

subject to:

u ∈ Uad and
Ay = u+ f, in Ω,

y = 0, on Γ.

define a DC representation of the cost functional for problem (PC) by including the
indicator function χUad for the admisible control set:

G : L2(Ω) → R
u 7→ G(u) := 1

2‖Su+ Sf − yd‖2L2(Ω) + α‖u‖2L2(Ω) + βδ‖u‖L1(Ω) + χUad ,

H : L2(Ω) → R
u 7→ H(u) := β

(
δ‖u‖L1(Ω) −Υp,γ(u)

)
.

(37)

Thus, by similar arguments as in the unconstrained case and taking into account that
∂χUad(u) corresponds to the normal cone of Uad at ū, we can derive an analogous optimality
system.

Theorem 5. Let ū a solution of (Pγ), then there exist ȳ = Sū in H1
0 (Ω), an adjoint

state φ ∈ H1
0 (Ω) and a multiplier ζ ∈ L2(Ω) and w̄ given by (20) such that the following

optimality system is satisfied :

Aȳ = ū+ f in Ω,
ȳ = 0 on Γ,

(38a)

A∗φ̄ = ȳ − yd in Ω,
φ̄ = 0 on Γ,

(38b)

〈φ̄+ αū+ β (δ ζ − w̄), u− ū〉 ≥ 0, ∀u ∈ Uad(38c)

ζ(x) = 1, si ū(x) > 0,
ζ(x) = −1, si ū(x) < 0,
|ζ(x)| ≤ 1, si ū(x) = 0,

(38d)

for almost all x ∈ Ω.

Moreover, there exist λa and λb in L2(Ω) such that the the last optimality system can be
written as a KKT optimality system:

Aȳ = ū+ f in Ω,
ȳ = 0 on Γ,

(39a)

A∗φ̄ = ȳ − yd in Ω,
φ̄ = 0 on Γ,

(39b)

φ̄+ αū+ β (δ ζ − w̄) + λb − λa = 0(39c)

λa ≥ 0, λb ≥ 0,
λa(ū− ua) = 0, λb(ub − ū) = 0,

(39d)

ζ(x) = 1 si ū(x) > 0,
ζ(x) = −1 si ū(x) < 0,
|ζ(x)| ≤ 1 si ū(x) = 0,

(39e)
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Proof. This theorem is proved by following the arguments of the proof of Theorem 3,
where variational inequality (38c) follows by taking into consideration classical results on
convex analysis and the fact that w̄ ∈ ∇f(ū) + βδ ∂‖ · ‖L1(Ω)(ū) + ∂χUad(ū).

In addition, by the usual projection operator PUad (see [11, Lemma 1.11]) on the admis-
sible control set, the variational inequality (38c) can be equivalently rewritten in equation
form:

(40) ū = PUad
[
− 1

α

(
φ̄+ β(δζ − w̄)

)]
.

4. Numerical solution via the DC Algorithm (DCA)

In the former section we have derived necessary optimality conditions for problem (Pγ)
which is suitable for applying the Semi-Smooth Newton method (SSN). However, SSN
does not guarantee descend of the objective function.

By the nature of our problem we turn our attention to its numerical solution by first
discretize–then–optimize approach by adapting the DC algorithm. The application of DC
algorithm to our problem leads to a numerical scheme which relies on numerical methods
for solving sparse L1 optimal control problems, including SNN methods. Our method
is completely determined by the formulation (19) which is a suitable DC–decomposition
of the original optimal control problem. For simplicity, we present the algorithm in a
functional setting, keeping in mind that there is an intermediary procedure for its dis-
cretization.

The DC–Algorithm is based on the fact that: if ū is the solution of the primal problem
(P’) then ∂H(ū) ⊂ ∂G(ū) and conversely, if u∗ is the solution of the dual problem denoted
by (P ′∗) we have the inclusion ∂G∗(u∗) ⊂ ∂H∗(u∗), where H∗ and G∗ correspond to the
dual functions of H and G respectively. This symmetry means that DC–Algorithm alter-
nates in computing approximations of the solutions for the primal and the dual problems
as follows:

First chose: wk ∈ ∂H(uk),(41)

then chose: uk ∈ ∂G∗(wk).(42)

DC-Algorithm provides a primal–dual updating procedure without need of the line–
search step. This is and important feature in optimal control problems where the line–
search step requires the evaluation of the cost function and its gradient requiring the
computation of the state and adjoint equations, which usually are very expensive to solve
numerically. A more detailed discussion on the DC method can be found in [7].

Since ∂H(uk) = {wk}, then formula (20) implies that wk is given by

(43) wk =


0, if |uk(x)| ≤ 1

γ ,[
δ − 1

p

(
|uk(x)|+ 1

γ
1−p
p

) 1−p
p

]
sign(uk(x)), otherwise.

For g : Rn → R convex and lower semi–continuous it follows that

g(x) = sup{〈x, y〉 − g∗(y) : y ∈ Rn}
Moreover, according to Rockafellar [18] the subgradients can be computed as:

∂G(y) = argmaxw{〈y, w〉 −G∗(w)},(44)

∂G∗(w) = argmaxz{〈w, z〉 −G(z)},(45)
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therefore, according to (45), uk can be obtained by solving the following optimal control
problem

(46) min
uk+1

1

2
‖Suk+1 + Sf − yd‖2L2(Ω) +

α

2
‖uk+1‖2L2(Ω) + δβ‖uk+1‖L1(Ω) −

∫
Ω
wkuk+1 dx.

Remark 4. By the form of the DC splitting (19) we get rid of the problem (44) and we
can compute wk directly from (43). In addition, observe that problem (46) is a convex
L1–sparse optimal control problem with penalization parameter δβ, for which it is known
to have a unique solution for α > 0 c.f. [19]. The case of α = 0 with box–constraints
is also possible. Moreover, this problem can be solved numerically in an efficient way.
For example, it can be solved by semi–smooth Newton methods proposed in [19] or, it can
be solved in the framework of sparse programming problems in finite dimensions after its
discretization.

In order to complete our algorithm, we now turn our attention to the following mech-
anism as stopping criterion. Looking at the gradient equation (24c) we could consider
checking

(47) ζk =
1

βδ
(wk − φk − αuk) ∈ ∂ ‖ · ‖L1(Ω)(uk),

where uk, φk, wk represent the corresponding approximations of the optimal control, the
adjoint state and the multipliers in the k–th iteration. In practice, a less sensitive stopping
criterion gave us better results. This consists in checking the residual:

(48) ‖ζk+1 − ζk‖ ≤ tol,
where tol is a prescribed tolerance.

Algorithm 1 DCA for problem (Pγ)

1: Initialize u0.
2: while stoping criteria is false do
3: Compute wk given by (43)
4: Compute uk+1 by solving problem (46)
5: k ← k + 1.
6: end while

In case of the presence of box–constraints on the control, our formulation yields an
box–constrained L1 optimal control subproblem

min
uk

1

2
‖Suk − yd‖2L2(Ω) +

α

2
‖uk‖2L2(Ω) + δβ‖uk‖L1(Ω) −

∫
Ω
wkuk dx.(49)

subject to:

uk ∈ Uad.

Algorithm 2 DCA for problem (PCγ)

1: Initialize u0.
2: while stoping criteria is false do
3: Compute wk given by (43)
4: Compute uk+1 by solving problem (49)
5: k ← k + 1.
6: end while
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5. Implementation aspects

5.1. Approximation. For simplicity, the approximation of problems (P) and (PC) is
done by the finite–difference scheme, although any method of discretization can be con-
sidered such as finite elements. Uniform meshes are considered in the domain Ω with N
internal nodes. The associated mesh parameter is given by h = 1

N+1 . Then, the state equa-

tion (3) is solved numerically with finite difference method, whereas the approximation of
the integrals are computed accordingly using the following mid–point rule:

∫ b

a

∫ d

c
u(x, y)dydx ≈ 1

4
h2
{
u(a, c) + u(b, c) + u(a, d) + u(b, d)(50)

+ 2
n−2∑
i=1

u(xi, c) + 2
n−2∑
i=1

u(xi, d) + 2
n−2∑
i=1

u(a, yi)

+ 2

n−2∑
i=1

u(b, yi) + 4

n−2∑
i=1

n−2∑
j=1

u(xi, yi)
}
.

Using this approximation, and reshaping the matrix (u(xi, yj))i,j=1,...,N as a vector u ∈
RN2

the L1–norm is approximated by

(51) ‖u‖1 ≈
N2∑
i=1

ci|ui|,

where ci are the corresponding coefficients given by (50).

5.2. Auxiliar L1–sparse optimal control problems. DC algorithms 1 and 2 have
a simple structure. However, they require to solve auxiliar L1–norm optimal control
problems (46) and (49) respectively. Clearly, the efficiency of the proposed algorithms
strongly depend on the numerical methods applied for solving (46) and (49). As mentioned
before, the numerical solution of the L1–norm optimal control problems can be done by
semi–smooth Newton methods proposed in [19]. Although our methodology was proposed
for elliptic problems, it can be extended for parabolic problems or optimal control problems
involving other equations, for which the semi–smooth system can be very large or not
having an straightforward deduction. In contrast with descend methods, semi–smooth
Newton methods do not guarantee reduction of the cost function. On the other hand,
many methods for solving L1–norm functionals are known to be of first order. We take
advantage of the full second–order method OESOM which is suitable for this class of
optimal control problems, see [6] for details and numerical evidence of the method.

The application of OESOM algorithm proposed in [6] is straightforward. Indeed, we
only need to provide the cost function and the corresponding gradient which involves the
computing of the adjoint state. The last one can be evaluated by means of the adjoint
state (24b),(38b). The second order information is computed automatically by the BFGS
method in the case of the smooth part of the cost function (alternatively Hessians can be
also used), whereas approximated second order information of non differentiable term is
calculated by the built–in enriched second order information constructed by the OESOM
algorithm using the weak derivatives of the L1–norm, see [6] for the details.

6. Numerical Evidence

In order to investigate the numerical performance of the proposed DC algorithm in
Section 4 we have implemented Algorithm 1 and 2 using MATLAB. The associated sparse
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L1 subproblem was solved using the OESOM algorithm [6] by extending it to the box–
constrained case with an additional projection step on the admisible control set. The
OESOM algorithm is a second–order method for solving `1–norm penalized optimization
problems which includes second order information hidden in the structure of the `1–norm.
therefore, is an efficient method to solve the subproblem of the DC algorithms.

As illustrative examples, we consider the following tests defined on the domain Ω =
(0, 1)× (0, 1).

Example 1. We consider the following problem:

(E1)


min
(y,u)

1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥ2(u)

subject to

−∆y = u, in Ω,

y = 0, on Γ,

where we chose the desired state yd = e− cos(2πxy)2/0.1.

Performance of a single run. We first solve this example fixing the values of α = 1/4
and β = 7/10. Algorithm 2 gives an approximated solution after 19 iterations stopping
when ‖ζk+1 − ζk‖ < tol = 1e−5. The table and graphics below, show the performance and
behavior of 2. We observe in Figure 2 the decreasing behavior of the objective function
and the residual.
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Figure 2. Cost function and residual of ζ at β = 0.004

Figure 3 depicts the evolution of stopping criteria, which is more erratic with a de-
creasing tendency. In each iteration new sparse components appear then, when comparing
consecutive multipliers, they may differ from 0 to 1 in those components, causing oscil-
lations on their difference. We also realize that the number of sparse components of the
approximated solution is increasing at every iterate.

Varying the regularization parameter γ. According to our theory, when γ →∞ the
solution ūγ → ū. Here we solve (E1) for increasing values of γ. The numerical evidence
of this convergence behavior is reflected in Table 2 where we observe optimal cost converges
to a fixed value, whereas sparsity also stabilizes at 1525 null components of the solution.

Varying the regularization parameter β. Now we experiment with different values
of β, which determines the sparsity inducting term Υ. Table 3 shows that a larger values
of β results in sparser solutions until the solution vanishes which illustrates Lemma 1. As
expected, it can also be observed that the optimal cost increases accordingly to the sparsity
of the solution, reflected in smaller supports of the controls.
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Figure 3. Residual of xk and sparse components at β = 0.004

k Cost Residual ‖ζk+1 − ζk‖ Null OESOME Execution
entries iterations time

1 229.2515 63.2346 0.044062 42 4 1.4507

2 229.2233 0.28763 11.5196 893 11 6.1601

3 229.2188 0.074112 21.7329 1170 11 6.303

4 229.2172 0.037194 11.0554 1303 8 4.7229

5 229.2164 0.026078 6.8869 1365 11 5.7958

6 229.2157 0.019197 5.2423 1423 23 9.8522

7 229.2154 0.014521 4.4751 1455 6 3.697

8 229.2152 0.010528 3.1231 1471 6 3.3486

9 229.2151 0.0074617 2.6985 1487 5 3.0378

10 229.215 0.0046823 1.8893 1493 7 3.5644

11 229.215 0.0057956 1.2435 1495 7 3.1689

12 229.2149 0.0071222 0.80207 1501 6 3.573

13 229.2148 0.0056617 1.6193 1507 6 2.9722

14 229.2148 0.0054029 1.1993 1511 7 3.7972

15 229.2147 0.0060645 1.1654 1519 6 3.1879

16 229.2147 0.0041252 1.7088 1521 6 2.7979

17 229.2147 0.0011533 1.0534 1525 6 2.7833

18 229.2147 0.000409 0.45796 1525 5 2.0453

19 229.2147 0.00051555 8.3408e-07 1525 5 2.0342

Table 1. Performance data for DCA for Example 1
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Figure 4. Optimal control and its support for β = 0.0002.
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γ Optimal Sparse DCA
Cost components Iterations

100 229.219724 1080 17

200 229.214857 1499 24

500 229.214082 1582 18

1000 229.214356 1553 22

1500 229.214650 1525 15

2000 229.214651 1525 17

2500 229.214650 1525 20

3000 229.214650 1525 20

4000 229.214650 1525 22

5000 229.214650 1525 24

Table 2. Numerical convergence for increasing values of γ.

β Optimal Sparse DCA
Cost components Iterations

0.0002 229.1145 1034 25

0.0005 229.259 1729 30

0.0010 229.4327 2528 37

0.0015 229.5503 3004 30

0.0020 229.6252 3359 31

0.0025 229.6676 3631 40

0.0030 229.6849 3843 37

Table 3. Solutions become sparser as β increases.
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Figure 5. Optimal control and its support for β = 0.001.

Varying the fractional power p. We finish this example with the variation of the
fractional exponent 1/p which also plays a rol in the sparsity of the solution. In fact, p
determines how expensive is an sparse control. Since for larger values of p the sparsity
term tends to produce a volume constraint induced by the Donoho’s counting norm c.f.[15].
However, the increment of p does not necessarily increase sparsity in the solution as we
can see in Table 4.
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Figure 6. Optimal control and its support for β = 0.002.
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Figure 7. Optimal control and its support for β = 0.003.

p Optimal Sparse DCA
Cost components Iterations

1 229.2028 789 4

1.2 229.3232 1860 18

1.5 229.4736 2778 32

2 229.6256 3355 27

4 229.8814 3667 26

8 230.3485 3441 23

10 230.5699 3323 28

20 231.4921 2846 23

Table 4. Influence of the power parameter p in the sparsity of the solution.
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Example 2. This example consists in adding box–constraints and keeping the same pa-
rameters in Example 1. Therefore, we require in addition that

u ∈ Uad = {u ∈ L2(Ω) : 0 ≤ u ≤ 0.035}.
A similar performance results are observed in this case as depicted in Figure 8. The

structure of the sparsity and the support of the optimal control is similar but now is also
active on the prescribed bounds as observed in Figure 9.
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Figure 8. Cost function and residual of ζ.
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Figure 9. Box–constrained optimal control and its support.

Our final experiment consists in a box–constrained optimal control problem with Lq–
term only (α = 0). In this case we observe (c.f. Figure 10) a typical bang–bang optimal
control shape.
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Figure 10. Box–constrained optimal control and its support for α = 0.
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